New Drug Development: Design, Methodology, and Analysis
This book provides an overview of the wide spectrum of activities involved in developing a new therapeutic drug. This spectrum starts with the initial stages of identifying a potentially useful drug candidate and concludes with the detailed monitoring of the drug’s safety after it has been approved for marketing and is being prescribed for a large number of patients throughout the country.
In between, it includes lead optimization, nonclinical and clinical evaluations of the drug’s safety and efficacy profiles, and manufacturing considerations. The second part of the book’s title, Design, Methodology, and Analysis, indicates the book’s focus on the collection, analysis, and interpretation of numerical representations of information throughout this drug development process.
The book is written with two groups of readers in mind. The first is entry level professionals in the pharmaceutical, biotechnology, and contract research organization industries and seasoned clinical research professionals who wish to refresh their knowledge in areas outside their immediate area of expertise. The second is students of clinical research, pharmacy, medicine, and allied health professions.
For the first audience, the book provides an introduction to new drug development and a core reference for discussions you will have with many members of study teams with whom you will work. These include professional statisticians and biomedical data scientists, clinical research associates, clinical monitors, clinical trial investigators, clinical trial administrators, managers, and coordinators, project managers, data managers, clinical scientists, regulatory affairs professionals, clinical operations specialists, medical writers, nurses, pharmacists, and medical safety officers. As well as becoming an expert at your own job, you will benefit greatly from being able to converse with all of these colleagues, and you will therefore become a much more valuable employee to your company.
For professors who may wish to consider using this book as a student textbook, several comments are appropriate. First, the book is the result of a course I teach in the Master of Science in Clinical Research degree program offered by Campbell University School of Pharmacy’s Department of Clinical Research. Given the department’s location in North Carolina’s Research Triangle Park, next to world class pharmaceutical and biotechnology companies and contract research organizations, study design and analysis are discussed in the context of pharmaceutical clinical trials. The fourteen chapters fit well with this semesterlong course. Second, the vast majority of references are books and book chapters, and these provide easily accessible sources of further information and resources for more detailed study. In addition, a list of Additional Resources for Training Executives and Professors is provided in the Appendix, indicating several books that may be particularly helpful as supplementary materials for lectures or may be designated as recommended additional reading for students. Third, PowerPoint slides for teaching support are available as detailed at the end of this preface.
Numerical information utilized in the drug development process takes many forms. Its collection and analysis vary from context to context, and its interpretation facilitates informed decision making. Study design and experimental methodology are concerned with the collection of optimum quality data, and analysis and interpretation are concerned with determining and interpreting the meaning of these data. Since the discipline of Statistics is concerned with design, methodology, and analysis, the book provides a conceptual introduction to Statistics and illustrates its important role in the new drug development process. For readers who may start to feel a little queasy at the very mention of the word “Statistics,” please rest assured that this book is not a traditional statistics textbook. It does not present the detailed computational steps necessary to conduct an array of individual statistical tests. Rather, the book’s chapters illustrate how the discipline of Statistics makes a central contribution to the complex process of new drug development by adopting a conceptual approach to the use of statistical analysis and the interpretation of the results obtained.
The defining goal of clinical research is to provide the evidence upon which evidence-based medicine is based. This evidence is typically provided to the clinical community in peer-reviewed clinical journal publications. A working knowledge of design, methodology, and analysis facilitates the ability to evaluate published results, distinguish well-conducted research from less well conducted research, and assess the relevance of high-quality research findings to the treatment of each individual patient.
Throughout the presentation of the material in this book author had focused on two goals. One of them is to advocate the position that design, methodology, and analysis are central characters in the process of new drug development and that “statistics” are not simply obligatory and onerous “add-ons” at the end of research studies or simply abstractions for someone else to worry about. Rather, statistical awareness is an integral component that is constructively and meaningfully woven into the very fabric of new drug development. An awareness of design, methodology, and analysis is useful to everyone involved in this research, since such awareness reminds us of the supreme importance of acquiring optimum quality data throughout the process. The second goal is to emphasize that the ultimate purpose of new drug development is to produce a biologically active drug that is safe and that effectively treats biological states of clinical concern. In a very real sense, this is a book about biology.
Download
This book provides an overview of the wide spectrum of activities involved in developing a new therapeutic drug. This spectrum starts with the initial stages of identifying a potentially useful drug candidate and concludes with the detailed monitoring of the drug’s safety after it has been approved for marketing and is being prescribed for a large number of patients throughout the country.
In between, it includes lead optimization, nonclinical and clinical evaluations of the drug’s safety and efficacy profiles, and manufacturing considerations. The second part of the book’s title, Design, Methodology, and Analysis, indicates the book’s focus on the collection, analysis, and interpretation of numerical representations of information throughout this drug development process.
The book is written with two groups of readers in mind. The first is entry level professionals in the pharmaceutical, biotechnology, and contract research organization industries and seasoned clinical research professionals who wish to refresh their knowledge in areas outside their immediate area of expertise. The second is students of clinical research, pharmacy, medicine, and allied health professions.
For the first audience, the book provides an introduction to new drug development and a core reference for discussions you will have with many members of study teams with whom you will work. These include professional statisticians and biomedical data scientists, clinical research associates, clinical monitors, clinical trial investigators, clinical trial administrators, managers, and coordinators, project managers, data managers, clinical scientists, regulatory affairs professionals, clinical operations specialists, medical writers, nurses, pharmacists, and medical safety officers. As well as becoming an expert at your own job, you will benefit greatly from being able to converse with all of these colleagues, and you will therefore become a much more valuable employee to your company.
For professors who may wish to consider using this book as a student textbook, several comments are appropriate. First, the book is the result of a course I teach in the Master of Science in Clinical Research degree program offered by Campbell University School of Pharmacy’s Department of Clinical Research. Given the department’s location in North Carolina’s Research Triangle Park, next to world class pharmaceutical and biotechnology companies and contract research organizations, study design and analysis are discussed in the context of pharmaceutical clinical trials. The fourteen chapters fit well with this semesterlong course. Second, the vast majority of references are books and book chapters, and these provide easily accessible sources of further information and resources for more detailed study. In addition, a list of Additional Resources for Training Executives and Professors is provided in the Appendix, indicating several books that may be particularly helpful as supplementary materials for lectures or may be designated as recommended additional reading for students. Third, PowerPoint slides for teaching support are available as detailed at the end of this preface.
Numerical information utilized in the drug development process takes many forms. Its collection and analysis vary from context to context, and its interpretation facilitates informed decision making. Study design and experimental methodology are concerned with the collection of optimum quality data, and analysis and interpretation are concerned with determining and interpreting the meaning of these data. Since the discipline of Statistics is concerned with design, methodology, and analysis, the book provides a conceptual introduction to Statistics and illustrates its important role in the new drug development process. For readers who may start to feel a little queasy at the very mention of the word “Statistics,” please rest assured that this book is not a traditional statistics textbook. It does not present the detailed computational steps necessary to conduct an array of individual statistical tests. Rather, the book’s chapters illustrate how the discipline of Statistics makes a central contribution to the complex process of new drug development by adopting a conceptual approach to the use of statistical analysis and the interpretation of the results obtained.
The defining goal of clinical research is to provide the evidence upon which evidence-based medicine is based. This evidence is typically provided to the clinical community in peer-reviewed clinical journal publications. A working knowledge of design, methodology, and analysis facilitates the ability to evaluate published results, distinguish well-conducted research from less well conducted research, and assess the relevance of high-quality research findings to the treatment of each individual patient.
Throughout the presentation of the material in this book author had focused on two goals. One of them is to advocate the position that design, methodology, and analysis are central characters in the process of new drug development and that “statistics” are not simply obligatory and onerous “add-ons” at the end of research studies or simply abstractions for someone else to worry about. Rather, statistical awareness is an integral component that is constructively and meaningfully woven into the very fabric of new drug development. An awareness of design, methodology, and analysis is useful to everyone involved in this research, since such awareness reminds us of the supreme importance of acquiring optimum quality data throughout the process. The second goal is to emphasize that the ultimate purpose of new drug development is to produce a biologically active drug that is safe and that effectively treats biological states of clinical concern. In a very real sense, this is a book about biology.
Download
No comments:
Post a Comment